技術面
在台股技術面,我們擁有 14 種資料集,如下:
- 台股總覽 TaiwanStockInfo
- 台股總覽(含權證) TaiwanStockInfoWithWarrant
- 台灣股價資料表 TaiwanStockPrice
- 台股週 K 資料表 TaiwanStockWeekPrice
- 台股月 K 資料表 TaiwanStockMonthPrice
- 台灣還原股價資料表 TaiwanStockPriceAdj
- 台灣股價歷史逐筆資料表 TaiwanStockPriceTick
- 台灣個股PER、PBR資料表 TaiwanStockPER
- 每5秒委託成交統計 TaiwanStockStatisticsOfOrderBookAndTrade
- 台股加權指數 TaiwanVariousIndicators5Seconds
- 當日沖銷交易標的及成交量值 TaiwanStockDayTrading
- 加權、櫃買報酬指數 TaiwanStockTotalReturnIndex
- 台灣個股十年線資料表 TaiwanStock10Year
- 台股分 K 資料表 TaiwanStockKBar
台股總覽 TaiwanStockInfo¶
- 這張資料表主要是列出台灣所有,上市、上櫃、興櫃,的股票名稱,代碼和產業類別!
- 資料更新時間 每天 1:30,實際更新時間以 API 資料為主
Example
from FinMind.data import DataLoader
api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_info()
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
"dataset": "TaiwanStockInfo",
"token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
dataset = "TaiwanStockInfo",
token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)
Output
industry_category | stock_id | stock_name | type | date | |
---|---|---|---|---|---|
0 | ETF | 0050 | 元大台灣50 | twse | 2021-10-05 |
1 | ETF | 0051 | 元大中型100 | twse | 2021-10-05 |
2 | ETF | 0052 | 富邦科技 | twse | 2021-10-05 |
3 | ETF | 0053 | 元大電子 | twse | 2021-10-05 |
4 | ETF | 0054 | 元大台商50 | twse | 2021-10-05 |
{
industry_category: str,
stock_id: str,
stock_name: str,
type: str,
date: str
}
台股總覽(含權證) TaiwanStockInfoWithWarrant¶
- 這張資料表主要是列出台灣所有,上市、上櫃、興櫃,的股票、權證名稱,代碼和產業類別!
- 資料量超過 5 萬筆
- 資料更新時間 每天 1:30,實際更新時間以 API 資料為主
Example
from FinMind.data import DataLoader
api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_info_with_warrant()
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
"dataset": "TaiwanStockInfoWithWarrant",
"token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
dataset = "TaiwanStockInfoWithWarrant",
token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)
Output
industry_category | stock_id | stock_name | type | date | |
---|---|---|---|---|---|
0 | ETF | 0050 | 元大台灣50 | twse | 2021-10-05 |
1 | ETF | 0051 | 元大中型100 | twse | 2021-10-05 |
2 | ETF | 0052 | 富邦科技 | twse | 2021-10-05 |
3 | ETF | 0053 | 元大電子 | twse | 2021-10-05 |
4 | ETF | 0054 | 元大台商50 | twse | 2021-10-05 |
{
industry_category: str,
stock_id: str,
stock_name: str,
type: str,
date: str
}
股價日成交資訊 TaiwanStockPrice¶
- 提供台股,上市、上櫃、興櫃,的股票日成交資訊!
- 資料區間:1994-10-01 ~ now
- 資料更新時間 星期一至五 17:30,實際更新時間以 API 資料為主
Example
from FinMind.data import DataLoader
api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_daily(
stock_id='2330',
start_date='2020-04-02',
end_date='2020-04-12'
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
"dataset": "TaiwanStockPrice",
"data_id": "2330",
"start_date": "2020-04-02",
"end_date": "2020-04-12",
"token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
dataset="TaiwanStockPrice",
data_id= "2330",
start_date= "2020-04-02",
end_date= "2020-04-08",
token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)
Output
date | stock_id | Trading_Volume | Trading_money | open | max | min | close | spread | Trading_turnover | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 2020-04-06 | 2330 | 59712754 | 16324198154 | 273 | 275.5 | 270 | 275.5 | 4 | 19971 |
1 | 2020-04-07 | 2330 | 48887346 | 13817936851 | 283.5 | 284 | 280.5 | 283 | 7.5 | 24281 |
2 | 2020-04-08 | 2330 | 38698826 | 11016972354 | 285 | 285.5 | 283 | 285 | 2 | 19126 |
3 | 2020-04-09 | 2330 | 29276430 | 8346209654 | 287.5 | 288 | 282.5 | 283 | -2 | 15271 |
4 | 2020-04-10 | 2330 | 28206858 | 7894277586 | 280 | 282 | 279 | 279.5 | -3.5 | 15833 |
{
date: str,
stock_id: str,
Trading_Volume: int64,
Trading_money: int64,
open: float64,
max: float64,
min: float64,
close: float64,
spread: float64,
Trading_turnover: float32
}
一次拿特定日期,所有資料(只限 backer、sponsor 使用)¶
Example
from FinMind.data import DataLoader
api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_daily(
start_date='2020-04-06',
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
"dataset": "TaiwanStockPrice",
"start_date": "2020-04-06",
"token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
dataset="TaiwanStockPrice",
start_date= "2020-04-06",
token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)
Output
date | stock_id | Trading_Volume | Trading_money | open | max | min | close | spread | Trading_turnover | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 2020-04-06 | 0050 | 12207626 | 935731083 | 76.95 | 77.1 | 75.75 | 77.05 | 1.15 | 5824 |
1 | 2020-04-06 | 0051 | 33000 | 953030 | 29.05 | 29.05 | 28.74 | 29.05 | 0.38 | 21 |
2 | 2020-04-06 | 0052 | 178700 | 10660088 | 59.4 | 60.05 | 58.75 | 60 | 1.25 | 56 |
3 | 2020-04-06 | 0053 | 17000 | 589750 | 34.66 | 35 | 34.48 | 34.84 | 0.18 | 17 |
4 | 2020-04-06 | 0054 | 10000 | 200040 | 19.87 | 20.03 | 19.87 | 20.03 | 0 | 4 |
{
date: str,
stock_id: str,
Trading_Volume: int64,
Trading_money: int64,
open: float64,
max: float64,
min: float64,
close: float64,
spread: float64,
Trading_turnover: int64
}
台股週 K 資料表 TaiwanStockWeekPrice (只限 backer、sponsor 會員使用)¶
- 提供台股,上市、上櫃、興櫃,的股票日成交資訊!
- 資料區間:2000-01-01 ~ now
- 資料更新時間 星期一至五 17:30,實際更新時間以 API 資料為主
Example
from FinMind.data import DataLoader
api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_weekly(
stock_id='2330',
start_date='2020-04-02',
end_date='2020-04-12'
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
"dataset": "TaiwanStockWeekPrice",
"data_id": "2330",
"start_date": "2020-04-02",
"end_date": "2020-04-12",
"token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
dataset="TaiwanStockWeekPrice",
data_id= "2330",
start_date= "2020-04-02",
end_date= "2020-04-08",
token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)
Output
stock_id | yweek | max | min | trading_volume | trading_money | trading_turnover | date | close | open | spread | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2330 | 2020W15 | 288 | 270 | 409564428 | 114799189198 | 188964 | 2020-04-06 | 279.5 | 273 | 8 |
{
stock_id: str,
yweek: str,
max: float64,
min: float64,
trading_volume: int64,
trading_money: int64,
trading_turnover: float32,
date: str,
close: float64,
open: float64,
spread: float64,
}
一次拿特定日期,所有資料(只限 backer、sponsor 使用)¶
Example
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
"dataset": "TaiwanStockWeekPrice",
"start_date": "2020-04-06",
"token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
dataset="TaiwanStockWeekPrice",
start_date= "2020-04-06",
token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)
Output
stock_id | yweek | max | min | trading_volume | trading_money | trading_turnover | date | close | open | spread | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2330 | 2020W15 | 288 | 270 | 409564428 | 114799189198 | 188964 | 2020-04-06 | 279.5 | 273 | 8 |
{
stock_id: str,
yweek: str,
max: float64,
min: float64,
trading_volume: int64,
trading_money: int64,
trading_turnover: float32,
date: str,
close: float64,
open: float64,
spread: float64,
}
台股月 K 資料表 TaiwanStockMonthPrice (只限 backer、sponsor 會員使用)¶
- 提供台股,上市、上櫃、興櫃,的股票日成交資訊!
- 資料區間:2000-01-01 ~ now
- 資料更新時間 星期一至五 17:30,實際更新時間以 API 資料為主
Example
from FinMind.data import DataLoader
api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_monthly(
stock_id='2330',
start_date='2020-04-02',
end_date='2020-04-12'
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
"dataset": "TaiwanStockMonthPrice",
"data_id": "2330",
"start_date": "2020-04-02",
"end_date": "2020-04-12",
"token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
dataset="TaiwanStockMonthPrice",
data_id= "2330",
start_date= "2020-04-02",
end_date= "2020-05-08",
token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)
Output
stock_id | ymonth | max | min | trading_volume | trading_money | trading_turnover | date | close | open | spread | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2330 | 2020M05 | 301.5 | 288.5 | 1744651784 | 513799591970 | 788158 | 2020-05-01 | 292 | 294.5 | -12.5 |
{
stock_id: str,
ymonth: str,
max: float64,
min: float64,
trading_volume: int64,
trading_money: int64,
trading_turnover: float32,
date: str,
close: float64,
open: float64,
spread: float64,
}
一次拿特定日期,所有資料(只限 backer、sponsor 使用)¶
Example
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
"dataset": "TaiwanStockMonthPrice",
"start_date": "2020-04-06",
"token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
dataset="TaiwanStockMonthPrice",
start_date= "2020-04-06",
token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)
Output
stock_id | ymonth | max | min | trading_volume | trading_money | trading_turnover | date | close | open | spread | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2330 | 2020M05 | 301.5 | 288.5 | 1744651784 | 513799591970 | 788158 | 2020-05-01 | 292 | 294.5 | -12.5 |
{
stock_id: str,
ymonth: str,
max: float64,
min: float64,
trading_volume: int64,
trading_money: int64,
trading_turnover: float32,
date: str,
close: float64,
open: float64,
spread: float64,
}
台灣還原股價資料表 TaiwanStockPriceAdj (只限 backer、sponsor 會員使用)¶
- 資料區間:1994-10-01 ~ now
- 資料更新時間 星期一至五 17:30,實際更新時間以 API 資料為主
Example
from FinMind.data import DataLoader
api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_daily_adj(
stock_id='2330',
start_date='2020-04-02',
end_date='2020-04-12'
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
"dataset": "TaiwanStockPriceAdj",
"data_id": "2330",
"start_date": "2020-04-02",
"end_date": "2020-04-12",
"token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
dataset="TaiwanStockPriceAdj",
data_id= "2330",
start_date= "2020-04-02",
end_date= "2020-04-08",
token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)
Output
date | stock_id | Trading_Volume | Trading_money | open | max | min | close | spread | Trading_turnover | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 2020-04-06 | 2330 | 59712754 | 16324198154 | 273 | 275.5 | 270 | 275.5 | 4 | 19971 |
1 | 2020-04-07 | 2330 | 48887346 | 13817936851 | 283.5 | 284 | 280.5 | 283 | 7.5 | 24281 |
2 | 2020-04-08 | 2330 | 38698826 | 11016972354 | 285 | 285.5 | 283 | 285 | 2 | 19126 |
3 | 2020-04-09 | 2330 | 29276430 | 8346209654 | 287.5 | 288 | 282.5 | 283 | -2 | 15271 |
4 | 2020-04-10 | 2330 | 28206858 | 7894277586 | 280 | 282 | 279 | 279.5 | -3.5 | 15833 |
{
date: str,
stock_id: str,
Trading_Volume: int64,
Trading_money: int64,
open: float64,
max: float64,
min: float64,
close: float64,
spread: float64,
Trading_turnover: float32
}
一次拿特定日期,所有資料(只限 backer、sponsor 使用)¶
Example
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
"dataset": "TaiwanStockPriceAdj",
"start_date": "2020-04-06",
"token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
dataset="TaiwanStockPriceAdj",
start_date= "2020-04-06",
token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)
Output
date | stock_id | Trading_Volume | Trading_money | open | max | min | close | spread | Trading_turnover | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 2020-04-06 | 0050 | 12207626 | 935731083 | 76.95 | 77.1 | 75.75 | 77.05 | 1.15 | 5824 |
1 | 2020-04-06 | 0051 | 33000 | 953030 | 29.05 | 29.05 | 28.74 | 29.05 | 0.38 | 21 |
2 | 2020-04-06 | 0052 | 178700 | 10660088 | 59.4 | 60.05 | 58.75 | 60 | 1.25 | 56 |
3 | 2020-04-06 | 0053 | 17000 | 589750 | 34.66 | 35 | 34.48 | 34.84 | 0.18 | 17 |
4 | 2020-04-06 | 0054 | 10000 | 200040 | 19.87 | 20.03 | 19.87 | 20.03 | 0 | 4 |
{
date: str,
stock_id: str,
Trading_Volume: int64,
Trading_money: int64,
open: float64,
max: float64,
min: float64,
close: float64,
spread: float64,
Trading_turnover: float32
}
台灣股價歷史逐筆資料表 TaiwanStockPriceTick (只限 backer、sponsor 會員使用)¶
(由於資料量過大,單次請求只提供一天資料)
- 資料區間:2019-01-01 ~ now。
- 輸入 dataset、stock_id、start_date 參數,會回傳 start_date 當天資料。
- 資料更新時間 星期一至五 15:30,實際更新時間以 API 資料為主。
- 部分資料缺失,缺失日期為:2019-02-20。
Example
from FinMind.data import DataLoader
api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_tick(
stock_id='2330',
date='2020-01-02'
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
"dataset": "TaiwanStockPriceTick",
"data_id": "2330",
"start_date": "2020-01-02",
"token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
dataset="TaiwanStockPriceTick",
data_id= "2330",
start_date= "2020-01-02",
token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = do.call('cbind',data$data) %>%
data.table
head(df)
Output
date | stock_id | deal_price | volume | Time | TickType | |
---|---|---|---|---|---|---|
0 | 2020-01-02 | 2330 | 332.5 | 520 | 09:00:00.000 | 0 |
1 | 2020-01-02 | 2330 | 332.5 | 520 | 09:00:00.646 | 0 |
2 | 2020-01-02 | 2330 | 333 | 45 | 09:00:05.000 | 0 |
3 | 2020-01-02 | 2330 | 333 | 45 | 09:00:05.660 | 0 |
4 | 2020-01-02 | 2330 | 333 | 22 | 09:00:10.000 | 0 |
{
date: str,
stock_id: str,
deal_price: float64,
volume: int64,
Time: str,
TickType: str # 0: 無法判斷, 1: 賣盤成交, 2: 買盤成交
}
個股PER、PBR資料表 TaiwanStockPER¶
- 資料區間:2005-10-01 ~ now
- 資料更新時間 星期一至五 18:00,實際更新時間以 API 資料為主
Example
from FinMind.data import DataLoader
api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_per_pbr(
stock_id='2330',
start_date='2020-01-02',
end_date='2020-04-12',
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
"dataset": "TaiwanStockPER",
"data_id": "2330",
"start_date": "2020-04-01",
"end_date": "2020-04-12",
"token": "", # 參考登入,獲取金鑰
}
data = requests.get(url, params=parameter)
data = data.json()
data = pd.DataFrame(data['data'])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(url = url,
query = list(
dataset="TaiwanStockPER",
data_id= "2330",
start_date= "2020-01-02",
end_date= "2020-04-12",
token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)
Output
date | stock_id | dividend_yield | PER | PBR | |
---|---|---|---|---|---|
0 | 2020-01-02 | 2330 | 2.36 | 26.69 | 5.54 |
1 | 2020-01-03 | 2330 | 2.36 | 26.73 | 5.55 |
2 | 2020-01-06 | 2330 | 2.41 | 26.14 | 5.42 |
3 | 2020-01-07 | 2330 | 2.43 | 25.94 | 5.38 |
4 | 2020-01-08 | 2330 | 2.43 | 25.94 | 5.38 |
{
date: str,
stock_id: str,
dividend_yield: float64,
PER: float64,
PBR: float64
}
每5秒委託成交統計 TaiwanStockStatisticsOfOrderBookAndTrade¶
(由於資料量過大,單次請求只提供一天資料)
- 資料區間:2005-01-01 ~ now
Example
from FinMind.data import DataLoader
api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_book_and_trade(
date='2021-01-07'
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
"dataset": "TaiwanStockStatisticsOfOrderBookAndTrade",
"start_date": "2021-01-07",
"token": "", # 參考登入,獲取金鑰
}
data = requests.get(url, params=parameter)
data = data.json()
data = pd.DataFrame(data['data'])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
dataset="TaiwanStockStatisticsOfOrderBookAndTrade",
start_date= "2021-01-07",
token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)
Output
Time | TotalBuyOrder | TotalBuyVolume | TotalSellOrder | TotalSellVolume | TotalDealOrder | TotalDealVolume | TotalDealMoney | date | |
---|---|---|---|---|---|---|---|---|---|
0 | 09:00:00 | 298618 | 3229222 | 365465 | 1730137 | 0 | 0 | 0 | 2021-01-07 |
1 | 09:00:05 | 301246 | 3254929 | 367886 | 1751034 | 17535 | 97251 | 4515 | 2021-01-07 |
2 | 09:00:10 | 304171 | 3283698 | 370338 | 1770414 | 31370 | 150557 | 7041 | 2021-01-07 |
3 | 09:00:15 | 307686 | 3325195 | 372828 | 1782960 | 40083 | 177080 | 8088 | 2021-01-07 |
4 | 09:00:20 | 310927 | 3345735 | 375220 | 1792055 | 47250 | 198536 | 9137 | 2021-01-07 |
{
Time: str,
TotalBuyOrder: str,
TotalBuyVolume: int64,
TotalSellOrder: int64,
TotalSellVolume: int64,
TotalDealOrder: int64,
TotalDealVolume: int64,
TotalDealMoney: int64,
date: str,
}
加權指數 TaiwanVariousIndicators5Seconds¶
(由於資料量過大,單次請求只提供一天資料)
- 資料區間:2005-01-01 ~ now
Example
from FinMind.data import DataLoader
api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.tse(
date='2020-07-01'
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
"dataset": "TaiwanVariousIndicators5Seconds",
"start_date": "2020-07-01",
"token": "", # 參考登入,獲取金鑰
}
data = requests.get(url, params=parameter)
data = data.json()
data = pd.DataFrame(data['data'])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
dataset="TaiwanVariousIndicators5Seconds",
start_date="2020-07-01",
token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)
Output
date | TAIEX | |
---|---|---|
0 | 2020-07-01 09:00:00 | 11621.2 |
1 | 2020-07-01 09:00:05 | 11622.6 |
2 | 2020-07-01 09:00:10 | 11632.4 |
3 | 2020-07-01 09:00:15 | 11643.5 |
4 | 2020-07-01 09:00:20 | 11644.2 |
{
date: str,
TAIEX: float64
}
當日沖銷交易標的及成交量值 TaiwanStockDayTrading¶
- 資料區間:2014-01-01 ~ now
- 資料更新時間 星期一至五 21:30,實際更新時間以 API 資料為主
Example
from FinMind.data import DataLoader
api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_day_trading(
stock_id='2330',
start_date='2020-04-02',
end_date='2020-04-12'
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
"dataset": "TaiwanStockDayTrading",
"data_id": "2330",
"start_date": "2020-04-02",
"end_date": "2020-04-12",
"token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
dataset="TaiwanStockDayTrading",
data_id= "2330",
start_date= "2020-04-02",
end_date= "2020-04-08",
token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)
Output
stock_id | date | BuyAfterSale | Volume | BuyAmount | SellAmount | |
---|---|---|---|---|---|---|
0 | 2330 | 2020-04-06 | Y | 8122000 | 2215280000 | 2218094500 |
1 | 2330 | 2020-04-07 | Y | 5128000 | 1450483500 | 1447872000 |
2 | 2330 | 2020-04-08 | Y | 2467000 | 702411500 | 702367000 |
3 | 2330 | 2020-04-09 | Y | 2583000 | 736745500 | 734035500 |
4 | 2330 | 2020-04-10 | Y | 1590000 | 445516000 | 444576000 |
{
stock_id: str,
date: str,
BuyAfterSale: str,
Volume: int64,
BuyAmount: int64,
SellAmount: int64
}
一次拿特定日期,所有資料(只限 backer、sponsor 會員使用)¶
Example
from FinMind.data import DataLoader
api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_day_trading(
start_date='2020-04-06',
)
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
"dataset": "TaiwanStockDayTrading",
"start_date": "2020-04-06",
"token": "", # 參考登入,獲取金鑰
}
res = requests.get(url, params=parameter)
temp = res.json()
data = pd.DataFrame(temp["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
dataset="TaiwanStockDayTrading",
start_date= "2020-04-06",
token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)
Output
stock_id | date | BuyAfterSale | Volume | BuyAmount | SellAmount | |
---|---|---|---|---|---|---|
0 | 0050 | 2020-04-06 | 1296000 | 99116100 | 99343200 | |
1 | 0051 | 2020-04-06 | 2000 | 57680 | 57560 | |
2 | 0052 | 2020-04-06 | 9000 | 536200 | 537700 | |
3 | 0053 | 2020-04-06 | 0 | 0 | 0 | |
4 | 0054 | 2020-04-06 | 0 | 0 | 0 |
{
stock_id: str,
date: str,
BuyAfterSale: str,
Volume: int64,
BuyAmount: int64,
SellAmount: int64
}
加權、櫃買報酬指數 TaiwanStockTotalReturnIndex¶
- 資料區間:2003-01-01 ~ now
- 資料更新時間 星期一至五 16:50,實際更新時間以 API 資料為主
Example
from FinMind.data import DataLoader
api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_total_return_index(
index_id="TAIEX",
start_date='2020-04-02',
end_date='2020-04-12'
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
"dataset": "TaiwanStockTotalReturnIndex",
"data_id": "TAIEX", # 發行量加權股價報酬指數
# "data_id": "TPEx", # 櫃買指數與報酬指數
"start_date": "2020-04-02",
"end_date": "2020-04-12",
"token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
dataset="TaiwanStockTotalReturnIndex",
data_id= "TAIEX", # 發行量加權股價報酬指數
# data_id= "TPEx", # 櫃買指數與報酬指數
start_date= "2020-04-02",
end_date= "2020-04-08",
token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)
Output
price | stock_id | date | |
---|---|---|---|
0 | 18356.5 | TAIEX | 2020-04-06 |
1 | 18688.6 | TAIEX | 2020-04-07 |
2 | 18952.7 | TAIEX | 2020-04-08 |
3 | 18922.6 | TAIEX | 2020-04-09 |
4 | 18994 | TAIEX | 2020-04-10 |
{
price: float64,
stock_id: str,
date: str
}
台灣個股十年線資料表 TaiwanStock10Year (只限 backer、sponsor 會員使用)¶
- 資料區間:2011-01-24 ~ now
- 透過2500個交易日所計算出的平均價格
- 資料更新時間 星期一至五 20:00,實際更新時間以 API 資料為主
Example
from FinMind.data import DataLoader
api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_10year(
stock_id='2330',
start_date='2020-04-02',
end_date='2020-04-12'
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
"dataset": "TaiwanStock10Year",
"data_id": "2330",
"start_date": "2020-04-02",
"end_date": "2020-04-12",
"token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
dataset="TaiwanStock10Year",
data_id= "2330",
start_date= "2020-04-02",
end_date= "2020-04-12",
token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)
Output
date | stock_id | close | |
---|---|---|---|
0 | 2020-04-06 | 2330 | 150.16 |
1 | 2020-04-07 | 2330 | 150.25 |
2 | 2020-04-08 | 2330 | 150.34 |
3 | 2020-04-09 | 2330 | 150.43 |
4 | 2020-04-10 | 2330 | 150.52 |
{
date: str,
stock_id: str,
close: float64
}
一次拿特定日期,所有資料(只限 backer、sponsor 使用)¶
Example
from FinMind.data import DataLoader
api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_10year(
start_date='2020-04-06',
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
"dataset": "TaiwanStock10Year",
"start_date": "2020-04-06",
"token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
dataset="TaiwanStock10Year",
start_date= "2020-04-06",
token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)
Output
date | stock_id | close | |
---|---|---|---|
0 | 2020-04-06 | 0050 | 66.5 |
1 | 2020-04-06 | 0053 | 28.68 |
2 | 2020-04-06 | 0055 | 14.31 |
3 | 2020-04-06 | 0056 | 24.59 |
4 | 2020-04-06 | 0061 | 16.28 |
{
date: str,
stock_id: str,
close: float64,
}
台股分 K 資料表 TaiwanStockKBar (只限 sponsor 會員使用)¶
(由於資料量過大,單次請求只提供一天資料)
- 資料區間:2019-01-01 ~ now
- 資料更新時間 星期一至五 15:50,實際更新時間以 API 資料為主
- 部分資料缺失,缺失日期為:2019-02-20。
- 開啟 Async 功能,可大幅縮短資料更新時間,colab 實測 2175 檔股票,只需 2 分 31 秒即可完成下載。
Example
from FinMind.data import DataLoader
api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_kbar(
stock_id='2330',
date="2023-09-22"
)
from FinMind.data import DataLoader
from loguru import logger
import datetime
token = ""
data_loader = DataLoader()
data_loader.login_by_token(token)
date = '2024-12-20'
taiwan_stock_price_df = data_loader.taiwan_stock_daily(start_date=date)
# 只拿取當天交易量大於 0 的股票
taiwan_stock_price_df = taiwan_stock_price_df[
["stock_id", "Trading_Volume"]
]
taiwan_stock_price_df = taiwan_stock_price_df[
taiwan_stock_price_df["Trading_Volume"] > 0
]
# 拿取當天上市櫃,industry_category 非大盤, index, 所有證券的股票 ID
# 因為這些股票沒有分點
stock_info_df = data_loader.taiwan_stock_info()
stock_info = stock_info_df[stock_info_df["type"].isin(["twse", "tpex"])]
cate_mask = stock_info["industry_category"].isin(
["大盤", "Index", "所有證券"]
)
id_mask = stock_info["stock_id"].isin(["TAIEX", "TPEx"])
stock_info = stock_info[~(cate_mask | id_mask)]
stock_info = stock_info.merge(
taiwan_stock_price_df, how="inner", on=["stock_id"]
)
stock_info = stock_info[~stock_info["stock_id"].isin(taiwan_stock_price_df)]
stock_id_list = list(set(stock_info["stock_id"].values))
logger.info(f"len: {len(stock_id_list)}") # 2175
start = datetime.datetime.now()
df = data_loader.taiwan_stock_kbar(
stock_id_list=stock_id_list,
date=date,
use_async=True,
)
cost = datetime.datetime.now() - start
logger.info(cost)
# 0:02:31.357733
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
"dataset": "TaiwanStockKBar",
"data_id": "2330",
"start_date": "2023-09-22",
"token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
dataset="TaiwanStockKBar",
data_id= "2330",
start_date= "2023-09-22",
token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)
Output
date | minute | stock_id | open | high | low | close | volume | |
---|---|---|---|---|---|---|---|---|
0 | 2023-09-22 | 09:00:00 | 2330 | 523 | 524 | 522 | 524 | 3893 |
1 | 2023-09-22 | 09:01:00 | 2330 | 524 | 524 | 523 | 524 | 159 |
2 | 2023-09-22 | 09:02:00 | 2330 | 523 | 524 | 522 | 523 | 548 |
3 | 2023-09-22 | 09:03:00 | 2330 | 522 | 523 | 522 | 522 | 208 |
4 | 2023-09-22 | 09:04:00 | 2330 | 522 | 523 | 522 | 522 | 179 |
{
date: str,
minute: str,
stock_id: str,
open: float64,
high: float64,
low: float64,
close: float64,
volume: float32
}