Skip to content

技術面

在台股技術面,我們擁有 14 種資料集,如下:


台股總覽 TaiwanStockInfo

  • 這張資料表主要是列出台灣所有,上市、上櫃、興櫃,的股票名稱,代碼和產業類別!
  • 資料更新時間 每天 1:30,實際更新時間以 API 資料為主

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_info()
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockInfo",
    "token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset = "TaiwanStockInfo",
    token = "" # 參考登入,獲取金鑰
    )
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

industry_category stock_id stock_name type date
0 ETF 0050 元大台灣50 twse 2021-10-05
1 ETF 0051 元大中型100 twse 2021-10-05
2 ETF 0052 富邦科技 twse 2021-10-05
3 ETF 0053 元大電子 twse 2021-10-05
4 ETF 0054 元大台商50 twse 2021-10-05
{
    industry_category: str,
    stock_id: str,
    stock_name: str,
    type: str,
    date: str
}

台股總覽(含權證) TaiwanStockInfoWithWarrant

  • 這張資料表主要是列出台灣所有,上市、上櫃、興櫃,的股票、權證名稱,代碼和產業類別!
  • 資料量超過 5 萬筆
  • 資料更新時間 每天 1:30,實際更新時間以 API 資料為主

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_info_with_warrant()
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockInfoWithWarrant",
    "token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset = "TaiwanStockInfoWithWarrant",
    token = "" # 參考登入,獲取金鑰
    )
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

industry_category stock_id stock_name type date
0 ETF 0050 元大台灣50 twse 2021-10-05
1 ETF 0051 元大中型100 twse 2021-10-05
2 ETF 0052 富邦科技 twse 2021-10-05
3 ETF 0053 元大電子 twse 2021-10-05
4 ETF 0054 元大台商50 twse 2021-10-05
{
    industry_category: str,
    stock_id: str,
    stock_name: str,
    type: str,
    date: str
}

股價日成交資訊 TaiwanStockPrice

  • 提供台股,上市、上櫃、興櫃,的股票日成交資訊!
  • 資料區間:1994-10-01 ~ now
  • 資料更新時間 星期一至五 17:30,實際更新時間以 API 資料為主

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_daily(
    stock_id='2330',
    start_date='2020-04-02',
    end_date='2020-04-12'
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockPrice",
    "data_id": "2330",
    "start_date": "2020-04-02",
    "end_date": "2020-04-12",
    "token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStockPrice",
    data_id= "2330",
    start_date= "2020-04-02",
    end_date= "2020-04-08",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

date stock_id Trading_Volume Trading_money open max min close spread Trading_turnover
0 2020-04-06 2330 59712754 16324198154 273 275.5 270 275.5 4 19971
1 2020-04-07 2330 48887346 13817936851 283.5 284 280.5 283 7.5 24281
2 2020-04-08 2330 38698826 11016972354 285 285.5 283 285 2 19126
3 2020-04-09 2330 29276430 8346209654 287.5 288 282.5 283 -2 15271
4 2020-04-10 2330 28206858 7894277586 280 282 279 279.5 -3.5 15833
{
    date: str,
    stock_id: str,
    Trading_Volume: int64,
    Trading_money: int64,
    open: float64,
    max: float64,
    min: float64,
    close: float64,
    spread: float64,
    Trading_turnover: float32
}

一次拿特定日期,所有資料(只限 backer、sponsor 使用)

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_daily(
    start_date='2020-04-06',
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockPrice",
    "start_date": "2020-04-06",
    "token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStockPrice",
    start_date= "2020-04-06",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

date stock_id Trading_Volume Trading_money open max min close spread Trading_turnover
0 2020-04-06 0050 12207626 935731083 76.95 77.1 75.75 77.05 1.15 5824
1 2020-04-06 0051 33000 953030 29.05 29.05 28.74 29.05 0.38 21
2 2020-04-06 0052 178700 10660088 59.4 60.05 58.75 60 1.25 56
3 2020-04-06 0053 17000 589750 34.66 35 34.48 34.84 0.18 17
4 2020-04-06 0054 10000 200040 19.87 20.03 19.87 20.03 0 4
{
    date: str,
    stock_id: str,
    Trading_Volume: int64,
    Trading_money: int64,
    open: float64,
    max: float64,
    min: float64,
    close: float64,
    spread: float64,
    Trading_turnover: int64
}

台股週 K 資料表 TaiwanStockWeekPrice (只限 backer、sponsor 會員使用)

  • 提供台股,上市、上櫃、興櫃,的股票日成交資訊!
  • 資料區間:2000-01-01 ~ now
  • 資料更新時間 星期一至五 17:30,實際更新時間以 API 資料為主

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_weekly(
    stock_id='2330',
    start_date='2020-04-02',
    end_date='2020-04-12'
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockWeekPrice",
    "data_id": "2330",
    "start_date": "2020-04-02",
    "end_date": "2020-04-12",
    "token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStockWeekPrice",
    data_id= "2330",
    start_date= "2020-04-02",
    end_date= "2020-04-08",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

stock_id yweek max min trading_volume trading_money trading_turnover date close open spread
0 2330 2020W15 288 270 409564428 114799189198 188964 2020-04-06 279.5 273 8
{
    stock_id: str,
    yweek: str,
    max: float64,
    min: float64,
    trading_volume: int64,
    trading_money: int64,
    trading_turnover: float32,
    date: str,
    close: float64,
    open: float64,
    spread: float64,
}

一次拿特定日期,所有資料(只限 backer、sponsor 使用)

Example

import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockWeekPrice",
    "start_date": "2020-04-06",
    "token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStockWeekPrice",
    start_date= "2020-04-06",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

stock_id yweek max min trading_volume trading_money trading_turnover date close open spread
0 2330 2020W15 288 270 409564428 114799189198 188964 2020-04-06 279.5 273 8
{
    stock_id: str,
    yweek: str,
    max: float64,
    min: float64,
    trading_volume: int64,
    trading_money: int64,
    trading_turnover: float32,
    date: str,
    close: float64,
    open: float64,
    spread: float64,
}

台股月 K 資料表 TaiwanStockMonthPrice (只限 backer、sponsor 會員使用)

  • 提供台股,上市、上櫃、興櫃,的股票日成交資訊!
  • 資料區間:2000-01-01 ~ now
  • 資料更新時間 星期一至五 17:30,實際更新時間以 API 資料為主

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_monthly(
    stock_id='2330',
    start_date='2020-04-02',
    end_date='2020-04-12'
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockMonthPrice",
    "data_id": "2330",
    "start_date": "2020-04-02",
    "end_date": "2020-04-12",
    "token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStockMonthPrice",
    data_id= "2330",
    start_date= "2020-04-02",
    end_date= "2020-05-08",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

stock_id ymonth max min trading_volume trading_money trading_turnover date close open spread
0 2330 2020M05 301.5 288.5 1744651784 513799591970 788158 2020-05-01 292 294.5 -12.5
{
    stock_id: str,
    ymonth: str,
    max: float64,
    min: float64,
    trading_volume: int64,
    trading_money: int64,
    trading_turnover: float32,
    date: str,
    close: float64,
    open: float64,
    spread: float64,
}

一次拿特定日期,所有資料(只限 backer、sponsor 使用)

Example

import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockMonthPrice",
    "start_date": "2020-04-06",
    "token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStockMonthPrice",
    start_date= "2020-04-06",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

stock_id ymonth max min trading_volume trading_money trading_turnover date close open spread
0 2330 2020M05 301.5 288.5 1744651784 513799591970 788158 2020-05-01 292 294.5 -12.5
{
    stock_id: str,
    ymonth: str,
    max: float64,
    min: float64,
    trading_volume: int64,
    trading_money: int64,
    trading_turnover: float32,
    date: str,
    close: float64,
    open: float64,
    spread: float64,
}

台灣還原股價資料表 TaiwanStockPriceAdj (只限 backer、sponsor 會員使用)

  • 資料區間:1994-10-01 ~ now
  • 資料更新時間 星期一至五 17:30,實際更新時間以 API 資料為主

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_daily_adj(
    stock_id='2330',
    start_date='2020-04-02',
    end_date='2020-04-12'
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockPriceAdj",
    "data_id": "2330",
    "start_date": "2020-04-02",
    "end_date": "2020-04-12",
    "token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStockPriceAdj",
    data_id= "2330",
    start_date= "2020-04-02",
    end_date= "2020-04-08",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

date stock_id Trading_Volume Trading_money open max min close spread Trading_turnover
0 2020-04-06 2330 59712754 16324198154 273 275.5 270 275.5 4 19971
1 2020-04-07 2330 48887346 13817936851 283.5 284 280.5 283 7.5 24281
2 2020-04-08 2330 38698826 11016972354 285 285.5 283 285 2 19126
3 2020-04-09 2330 29276430 8346209654 287.5 288 282.5 283 -2 15271
4 2020-04-10 2330 28206858 7894277586 280 282 279 279.5 -3.5 15833
{
    date: str,
    stock_id: str,
    Trading_Volume: int64,
    Trading_money: int64,
    open: float64,
    max: float64,
    min: float64,
    close: float64,
    spread: float64,
    Trading_turnover: float32
}

一次拿特定日期,所有資料(只限 backer、sponsor 使用)

Example

import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockPriceAdj",
    "start_date": "2020-04-06",
    "token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStockPriceAdj",
    start_date= "2020-04-06",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

date stock_id Trading_Volume Trading_money open max min close spread Trading_turnover
0 2020-04-06 0050 12207626 935731083 76.95 77.1 75.75 77.05 1.15 5824
1 2020-04-06 0051 33000 953030 29.05 29.05 28.74 29.05 0.38 21
2 2020-04-06 0052 178700 10660088 59.4 60.05 58.75 60 1.25 56
3 2020-04-06 0053 17000 589750 34.66 35 34.48 34.84 0.18 17
4 2020-04-06 0054 10000 200040 19.87 20.03 19.87 20.03 0 4
{
    date: str,
    stock_id: str,
    Trading_Volume: int64,
    Trading_money: int64,
    open: float64,
    max: float64,
    min: float64,
    close: float64,
    spread: float64,
    Trading_turnover: float32
}

台灣股價歷史逐筆資料表 TaiwanStockPriceTick (只限 backer、sponsor 會員使用)

(由於資料量過大,單次請求只提供一天資料)

  • 資料區間:2019-01-01 ~ now。
  • 輸入 dataset、stock_id、start_date 參數,會回傳 start_date 當天資料。
  • 資料更新時間 星期一至五 15:30,實際更新時間以 API 資料為主。
  • 部分資料缺失,缺失日期為:2019-02-20。

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_tick(
    stock_id='2330',
    date='2020-01-02'
)
import requests
import pandas as pd

url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockPriceTick",
    "data_id": "2330",
    "start_date": "2020-01-02",
    "token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStockPriceTick",
    data_id= "2330",
    start_date= "2020-01-02",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = do.call('cbind',data$data) %>%
data.table
head(df)

Output

date stock_id deal_price volume Time TickType
0 2020-01-02 2330 332.5 520 09:00:00.000 0
1 2020-01-02 2330 332.5 520 09:00:00.646 0
2 2020-01-02 2330 333 45 09:00:05.000 0
3 2020-01-02 2330 333 45 09:00:05.660 0
4 2020-01-02 2330 333 22 09:00:10.000 0
{
    date: str,
    stock_id: str,
    deal_price: float64,
    volume: int64,
    Time: str,
    TickType: str # 0: 無法判斷, 1: 賣盤成交, 2: 買盤成交
}

個股PER、PBR資料表 TaiwanStockPER

  • 資料區間:2005-10-01 ~ now
  • 資料更新時間 星期一至五 18:00,實際更新時間以 API 資料為主

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_per_pbr(
    stock_id='2330',
    start_date='2020-01-02',
    end_date='2020-04-12',
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockPER",
    "data_id": "2330",
    "start_date": "2020-04-01",
    "end_date": "2020-04-12",
    "token": "", # 參考登入,獲取金鑰
}
data = requests.get(url, params=parameter)
data = data.json()
data = pd.DataFrame(data['data'])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(url = url,
                    query = list(
                    dataset="TaiwanStockPER",
                    data_id= "2330",
                    start_date= "2020-01-02",
                    end_date= "2020-04-12",
                    token = "" # 參考登入,獲取金鑰
                    )
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

date stock_id dividend_yield PER PBR
0 2020-01-02 2330 2.36 26.69 5.54
1 2020-01-03 2330 2.36 26.73 5.55
2 2020-01-06 2330 2.41 26.14 5.42
3 2020-01-07 2330 2.43 25.94 5.38
4 2020-01-08 2330 2.43 25.94 5.38
{
    date: str,
    stock_id: str,
    dividend_yield: float64,
    PER: float64,
    PBR: float64
}

每5秒委託成交統計 TaiwanStockStatisticsOfOrderBookAndTrade

(由於資料量過大,單次請求只提供一天資料)

  • 資料區間:2005-01-01 ~ now

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_book_and_trade(
    date='2021-01-07'
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockStatisticsOfOrderBookAndTrade",
    "start_date": "2021-01-07",
    "token": "", # 參考登入,獲取金鑰
}
data = requests.get(url, params=parameter)
data = data.json()
data = pd.DataFrame(data['data'])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStockStatisticsOfOrderBookAndTrade",
    start_date= "2021-01-07",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

Time TotalBuyOrder TotalBuyVolume TotalSellOrder TotalSellVolume TotalDealOrder TotalDealVolume TotalDealMoney date
0 09:00:00 298618 3229222 365465 1730137 0 0 0 2021-01-07
1 09:00:05 301246 3254929 367886 1751034 17535 97251 4515 2021-01-07
2 09:00:10 304171 3283698 370338 1770414 31370 150557 7041 2021-01-07
3 09:00:15 307686 3325195 372828 1782960 40083 177080 8088 2021-01-07
4 09:00:20 310927 3345735 375220 1792055 47250 198536 9137 2021-01-07
{
    Time: str,
    TotalBuyOrder: str,
    TotalBuyVolume: int64,
    TotalSellOrder: int64,
    TotalSellVolume: int64,
    TotalDealOrder: int64,
    TotalDealVolume: int64,
    TotalDealMoney: int64,
    date: str,
}

加權指數 TaiwanVariousIndicators5Seconds

(由於資料量過大,單次請求只提供一天資料)

  • 資料區間:2005-01-01 ~ now

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.tse(
    date='2020-07-01'
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanVariousIndicators5Seconds",
    "start_date": "2020-07-01",
    "token": "", # 參考登入,獲取金鑰
}
data = requests.get(url, params=parameter)
data = data.json()
data = pd.DataFrame(data['data'])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanVariousIndicators5Seconds",
    start_date="2020-07-01",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

date TAIEX
0 2020-07-01 09:00:00 11621.2
1 2020-07-01 09:00:05 11622.6
2 2020-07-01 09:00:10 11632.4
3 2020-07-01 09:00:15 11643.5
4 2020-07-01 09:00:20 11644.2
{
    date: str,
    TAIEX: float64
}

當日沖銷交易標的及成交量值 TaiwanStockDayTrading

  • 資料區間:2014-01-01 ~ now
  • 資料更新時間 星期一至五 21:30,實際更新時間以 API 資料為主

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_day_trading(
    stock_id='2330',
    start_date='2020-04-02',
    end_date='2020-04-12'
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockDayTrading",
    "data_id": "2330",
    "start_date": "2020-04-02",
    "end_date": "2020-04-12",
    "token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStockDayTrading",
    data_id= "2330",
    start_date= "2020-04-02",
    end_date= "2020-04-08",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

stock_id date BuyAfterSale Volume BuyAmount SellAmount
0 2330 2020-04-06 Y 8122000 2215280000 2218094500
1 2330 2020-04-07 Y 5128000 1450483500 1447872000
2 2330 2020-04-08 Y 2467000 702411500 702367000
3 2330 2020-04-09 Y 2583000 736745500 734035500
4 2330 2020-04-10 Y 1590000 445516000 444576000
{
    stock_id: str,
    date: str,
    BuyAfterSale: str,
    Volume: int64,
    BuyAmount: int64,
    SellAmount: int64
}

一次拿特定日期,所有資料(只限 backer、sponsor 會員使用)

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_day_trading(
    start_date='2020-04-06',
)
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockDayTrading",
    "start_date": "2020-04-06",
    "token": "", # 參考登入,獲取金鑰
}
res = requests.get(url, params=parameter)
temp = res.json()
data = pd.DataFrame(temp["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStockDayTrading",
    start_date= "2020-04-06",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

stock_id date BuyAfterSale Volume BuyAmount SellAmount
0 0050 2020-04-06 1296000 99116100 99343200
1 0051 2020-04-06 2000 57680 57560
2 0052 2020-04-06 9000 536200 537700
3 0053 2020-04-06 0 0 0
4 0054 2020-04-06 0 0 0
{
    stock_id: str,
    date: str,
    BuyAfterSale: str,
    Volume: int64,
    BuyAmount: int64,
    SellAmount: int64
}

加權、櫃買報酬指數 TaiwanStockTotalReturnIndex

  • 資料區間:2003-01-01 ~ now
  • 資料更新時間 星期一至五 16:50,實際更新時間以 API 資料為主

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_total_return_index(
    index_id="TAIEX",
    start_date='2020-04-02',
    end_date='2020-04-12'
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockTotalReturnIndex",
    "data_id": "TAIEX", # 發行量加權股價報酬指數
    # "data_id": "TPEx", # 櫃買指數與報酬指數
    "start_date": "2020-04-02",
    "end_date": "2020-04-12",
    "token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStockTotalReturnIndex",
    data_id= "TAIEX", # 發行量加權股價報酬指數
    # data_id= "TPEx", # 櫃買指數與報酬指數
    start_date= "2020-04-02",
    end_date= "2020-04-08",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

price stock_id date
0 18356.5 TAIEX 2020-04-06
1 18688.6 TAIEX 2020-04-07
2 18952.7 TAIEX 2020-04-08
3 18922.6 TAIEX 2020-04-09
4 18994 TAIEX 2020-04-10
{
    price: float64,
    stock_id: str,
    date: str
}

台灣個股十年線資料表 TaiwanStock10Year (只限 backer、sponsor 會員使用)

  • 資料區間:2011-01-24 ~ now
  • 透過2500個交易日所計算出的平均價格
  • 資料更新時間 星期一至五 20:00,實際更新時間以 API 資料為主

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_10year(
    stock_id='2330',
    start_date='2020-04-02',
    end_date='2020-04-12'
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStock10Year",
    "data_id": "2330",
    "start_date": "2020-04-02",
    "end_date": "2020-04-12",
    "token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStock10Year",
    data_id= "2330",
    start_date= "2020-04-02",
    end_date= "2020-04-12",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

date stock_id close
0 2020-04-06 2330 150.16
1 2020-04-07 2330 150.25
2 2020-04-08 2330 150.34
3 2020-04-09 2330 150.43
4 2020-04-10 2330 150.52
{
    date: str,
    stock_id: str,
    close: float64
}

一次拿特定日期,所有資料(只限 backer、sponsor 使用)

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_10year(
    start_date='2020-04-06',
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStock10Year",
    "start_date": "2020-04-06",
    "token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStock10Year",
    start_date= "2020-04-06",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

date stock_id close
0 2020-04-06 0050 66.5
1 2020-04-06 0053 28.68
2 2020-04-06 0055 14.31
3 2020-04-06 0056 24.59
4 2020-04-06 0061 16.28
{
    date: str,
    stock_id: str,
    close: float64,
}

台股分 K 資料表 TaiwanStockKBar (只限 sponsor 會員使用)

(由於資料量過大,單次請求只提供一天資料)

  • 資料區間:2019-01-01 ~ now
  • 資料更新時間 星期一至五 15:50,實際更新時間以 API 資料為主
  • 部分資料缺失,缺失日期為:2019-02-20。
  • 開啟 Async 功能,可大幅縮短資料更新時間,colab 實測 2175 檔股票,只需 2 分 31 秒即可完成下載。

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_kbar(
    stock_id='2330',
    date="2023-09-22"
)
from FinMind.data import DataLoader
from loguru import logger
import datetime

token = ""

data_loader = DataLoader()
data_loader.login_by_token(token)

date = '2024-12-20'
taiwan_stock_price_df = data_loader.taiwan_stock_daily(start_date=date)
# 只拿取當天交易量大於 0 的股票
taiwan_stock_price_df = taiwan_stock_price_df[
    ["stock_id", "Trading_Volume"]
]
taiwan_stock_price_df = taiwan_stock_price_df[
    taiwan_stock_price_df["Trading_Volume"] > 0
]
# 拿取當天上市櫃,industry_category 非大盤, index, 所有證券的股票 ID
# 因為這些股票沒有分點
stock_info_df = data_loader.taiwan_stock_info()
stock_info = stock_info_df[stock_info_df["type"].isin(["twse", "tpex"])]
cate_mask = stock_info["industry_category"].isin(
    ["大盤", "Index", "所有證券"]
)
id_mask = stock_info["stock_id"].isin(["TAIEX", "TPEx"])
stock_info = stock_info[~(cate_mask | id_mask)]
stock_info = stock_info.merge(
    taiwan_stock_price_df, how="inner", on=["stock_id"]
)
stock_info = stock_info[~stock_info["stock_id"].isin(taiwan_stock_price_df)]
stock_id_list = list(set(stock_info["stock_id"].values))
logger.info(f"len: {len(stock_id_list)}")  # 2175
start = datetime.datetime.now()
df = data_loader.taiwan_stock_kbar(
    stock_id_list=stock_id_list,
    date=date,
    use_async=True,
)
cost = datetime.datetime.now() - start
logger.info(cost)
# 0:02:31.357733
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockKBar",
    "data_id": "2330",
    "start_date": "2023-09-22",
    "token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStockKBar",
    data_id= "2330",
    start_date= "2023-09-22",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

date minute stock_id open high low close volume
0 2023-09-22 09:00:00 2330 523 524 522 524 3893
1 2023-09-22 09:01:00 2330 524 524 523 524 159
2 2023-09-22 09:02:00 2330 523 524 522 523 548
3 2023-09-22 09:03:00 2330 522 523 522 522 208
4 2023-09-22 09:04:00 2330 522 523 522 522 179
{
    date: str,
    minute: str,
    stock_id: str,
    open: float64,
    high: float64,
    low: float64,
    close: float64,
    volume: float32
}