Skip to content

基本面

在台股基本面,我們擁有 10 種資料集,如下:


綜合損益表 TaiwanStockFinancialStatements

  • 資料區間:1990-03-01 ~ now

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_financial_statement(
    stock_id="2330",
    start_date='2019-01-01',
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockFinancialStatements",
    "data_id": "2330",
    "start_date": "2019-01-01",
    "token": "", # 參考登入,獲取金鑰
}
data = requests.get(url, params=parameter)
data = data.json()
data = pd.DataFrame(data['data'])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStockFinancialStatements",
    data_id="2330",
    start_date= "2019-01-02",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

date stock_id type value origin_name
0 2019-03-31 2330 CostOfGoodsSold 1.28352e+11 營業成本
1 2019-03-31 2330 EPS 2.37 基本每股盈餘(元)
2 2019-03-31 2330 EquityAttributableToOwnersOfParent 6.60098e+10 綜合損益總額歸屬於母公司業主
3 2019-03-31 2330 GrossProfit 9.03576e+10 營業毛利(毛損)淨額
4 2019-03-31 2330 IncomeAfterTaxes 6.13873e+10 本期淨利(淨損)
{
    date: str,
    stock_id: str,
    type: str,
    value: float64,
    origin_name: str
}

一次拿特定日期,所有資料(只限 backer、sponsor 會員使用)

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_financial_statement(
    start_date='2019-03-31',
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockFinancialStatements",
    "start_date": "2019-03-31",
    "token": "", # 參考登入,獲取金鑰
}
data = requests.get(url, params=parameter)
data = data.json()
data = pd.DataFrame(data['data'])
print(data)
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStockFinancialStatements",
    start_date= "2019-03-31",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

date stock_id type value origin_name
0 2019-03-31 000116 EPS 0.24 基本每股盈餘(元)
1 2019-03-31 000116 EquityAttributableToOwnersOfParent 4.65569e+08 綜合損益總額歸屬於母公司業主
2 2019-03-31 000116 Expense 8.95498e+08 支出及費用
3 2019-03-31 000116 Income 1.07791e+09 收益
4 2019-03-31 000116 IncomeAfterTaxes 2.74322e+08 本期淨利(淨損)
{
    date: str,
    stock_id: str,
    type: str,
    value: float64,
    origin_name: str
}

資產負債表 TaiwanStockBalanceSheet

  • 資料區間:2011-12-01 ~ now

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_balance_sheet(
    stock_id="2330",
    start_date='2019-03-31',
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockBalanceSheet",
    "data_id": "2330",
    "start_date": "2019-01-01",
    "token": "", # 參考登入,獲取金鑰
}
data = requests.get(url, params=parameter)
data = data.json()
data = pd.DataFrame(data['data'])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStockBalanceSheet",
    data_id="2330",
    start_date= "2019-01-02",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

date stock_id type value origin_name
0 2019-03-31 2330 AccountsPayable 2.71009e+10 應付帳款
1 2019-03-31 2330 AccountsPayable_per 1.24 應付帳款
2 2019-03-31 2330 AccountsPayableToRelatedParties 5.60941e+08 應付帳款-關係人
3 2019-03-31 2330 AccountsPayableToRelatedParties_per 0.03 應付帳款-關係人
4 2019-03-31 2330 AccountsReceivableDuefromRelatedPartiesNet 3.09821e+08 應收帳款-關係人淨額
{
    date: str,
    stock_id: str,
    type: str,
    value: float64,
    origin_name: str
}

一次拿特定日期,所有資料(只限 backer、sponsor 會員使用)

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_balance_sheet(
    start_date='2019-03-31',
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockBalanceSheet",
    "start_date": "2019-03-31",
    "token": "", # 參考登入,獲取金鑰
}
data = requests.get(url, params=parameter)
data = data.json()
data = pd.DataFrame(data['data'])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStockBalanceSheet",
    start_date= "2019-03-31",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

date stock_id type value origin_name
0 2019-03-31 1101 AccountsPayable 7.84411e+09 應付帳款
1 2019-03-31 1101 AccountsPayable_per 2.15 應付帳款
2 2019-03-31 1101 AccountsReceivableDuefromRelatedPartiesNet 2.64638e+08 應收帳款-關係人淨額
3 2019-03-31 1101 AccountsReceivableDuefromRelatedPartiesNet_per 0.07 應收帳款-關係人淨額
4 2019-03-31 1101 AccountsReceivableNet 8.3396e+09 應收帳款淨額
{
    date: str,
    stock_id: str,
    type: str,
    value: float64,
    origin_name: str
}

現金流量表 TaiwanStockCashFlowsStatement

  • 資料區間:2008-06-01 ~ now

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_cash_flows_statement(
    stock_id="2330",
    start_date='2019-03-31',
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockCashFlowsStatement",
    "data_id": "2330",
    "start_date": "2019-01-01",
    "token": "", # 參考登入,獲取金鑰
}
data = requests.get(url, params=parameter)
data = data.json()
data = pd.DataFrame(data['data'])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStockCashFlowsStatement",
    data_id="2330",
    start_date= "2019-01-02",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

date stock_id type value origin_name
0 2019-03-31 2330 HedgingFinancialLiabilities -2.27383e+08 除列避險之金融負債
1 2019-03-31 2330 CashFlowsFromOperatingActivities 1.5267e+11 營業活動之淨現金流入(流出)
2 2019-03-31 2330 CashProvidedByInvestingActivities -6.41885e+10 投資活動之淨現金流入(流出)
3 2019-03-31 2330 CashBalancesIncrease 6.78559e+10 本期現金及約當現金增加(減少)數
4 2019-03-31 2330 NetIncomeBeforeTax 6.81817e+10 本期稅前淨利(淨損)
{
    date: str,
    stock_id: str,
    type: str,
    value: float64,
    origin_name: str
}

一次拿特定日期,所有資料(只限 backer、sponsor 會員使用)

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_cash_flows_statement(
    start_date='2019-03-31',
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockCashFlowsStatement",
    "start_date": "2019-03-31",
    "token": "", # 參考登入,獲取金鑰
}
data = requests.get(url, params=parameter)
data = data.json()
data = pd.DataFrame(data['data'])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStockCashFlowsStatement",
    start_date= "2019-03-31",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

date stock_id type value origin_name
0 2019-03-31 1101 DecreaseInShortTermLoans 7.59053e+09 短期借款減少
1 2019-03-31 1101 ReceivableIncrease -1.15069e+08 應收帳款(增加)減少
2 2019-03-31 1101 PropertyAndPlantAndEquipment -1.48367e+09 取得不動產、廠房及設備
3 2019-03-31 1101 NetIncomeBeforeTax 5.6035e+09 本期稅前淨利(淨損)
4 2019-03-31 1101 CashProvidedByInvestingActivities -4.31058e+09 投資活動之淨現金流入(流出)
{
    date: str,
    stock_id: str,
    type: str,
    value: float64,
    origin_name: str
}

股利政策表 TaiwanStockDividend

  • 資料區間:2005-05-01 ~ now

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_dividend(
    stock_id="2330",
    start_date='2019-03-31',
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockDividend",
    "data_id": "2330",
    "start_date": "2019-01-01",
    "token": "", # 參考登入,獲取金鑰
}
data = requests.get(url, params=parameter)
data = data.json()
data = pd.DataFrame(data['data'])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStockStockDividend",
    data_id="2330",
    start_date= "2019-01-02",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

date stock_id year StockEarningsDistribution StockStatutorySurplus StockExDividendTradingDate TotalEmployeeStockDividend TotalEmployeeStockDividendAmount RatioOfEmployeeStockDividendOfTotal RatioOfEmployeeStockDividend CashEarningsDistribution CashStatutorySurplus CashExDividendTradingDate CashDividendPaymentDate TotalEmployeeCashDividend TotalNumberOfCashCapitalIncrease CashIncreaseSubscriptionRate CashIncreaseSubscriptionpRrice RemunerationOfDirectorsAndSupervisors ParticipateDistributionOfTotalShares AnnouncementDate AnnouncementTime
0 2019-06-30 2330 107年 0 0 0 0 0 0 8 0 2019-06-24 2019-07-18 0 0 0 0 0 2.59304e+10 2019-06-06 15:47:30
1 2019-09-25 2330 108年第1季 0 0 0 0 0 0 2 0 2019-09-19 2019-10-17 0 0 0 0 0 2.59304e+10 2019-07-09 18:33:02
2 2019-12-25 2330 108年第2季 0 0 0 0 0 0 2.5 0 2019-12-19 2020-01-16 0 0 0 0 0 2.59304e+10 2019-08-14 15:27:02
3 2020-03-25 2330 108年第3季 0 0 0 0 0 0 2.5 0 2020-03-19 2020-04-16 0 0 0 0 0 2.59304e+10 2019-11-14 17:01:07
4 2020-06-24 2330 108年第4季 0 0 0 0 0 0 2.5 0 2020-06-18 2020-07-16 0 0 0 0 0 2.59304e+10 2020-02-14 15:10:50
{
    date: str,
    stock_id: str,
    year: str,
    StockEarningsDistribution: float64,
    StockStatutorySurplus: float64,
    StockExDividendTradingDate: str,
    TotalEmployeeStockDividend: float64,
    TotalEmployeeStockDividendAmount: float64,
    RatioOfEmployeeStockDividendOfTotal: float64,
    RatioOfEmployeeStockDividend: float64,
    CashEarningsDistribution: float64,
    CashStatutorySurplus: float64,
    CashExDividendTradingDate: str,
    CashDividendPaymentDate: str,
    TotalEmployeeCashDividend: float64,
    TotalNumberOfCashCapitalIncrease: float64,
    CashIncreaseSubscriptionRate: float64,
    CashIncreaseSubscriptionpRrice: float64,
    RemunerationOfDirectorsAndSupervisors: float64,
    ParticipateDistributionOfTotalShares: float64,
    AnnouncementDate: str,
    AnnouncementTime: str
}

除權除息結果表 TaiwanStockDividendResult

  • 資料區間:2003-05-01 ~ now

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_dividend_result(
    stock_id="2330",
    start_date='2019-03-31',
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockDividendResult",
    "data_id": "2330",
    "start_date": "2019-01-01",
    "token": "", # 參考登入,獲取金鑰
}
data = requests.get(url, params=parameter)
data = data.json()
data = pd.DataFrame(data['data'])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStockDividendResult",
    data_id="2330",
    start_date= "2019-01-02",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

date stock_id before_price after_price stock_and_cache_dividend stock_or_cache_dividend max_price min_price open_price reference_price
0 2019-06-24 2330 248.5 240.5 8 264.5 216.5 240.5 240.5
1 2019-09-19 2330 267 265 2 291.5 238.5 265 265
2 2019-12-19 2330 344.5 342 2.5 376 308 342 342
3 2020-03-19 2330 260 257.5 2.5 283 232 257.5 257.5
4 2020-06-18 2330 315 312.5 2.5 343.5 281.5 312.5 312.5
{
    date: str,
    stock_id: str,
    before_price: float32,
    after_price: float32,
    stock_and_cache_dividend: float32,
    stock_or_cache_dividend: float32,
    max_price: float32,
    min_price: float32,
    open_price: float32,
    reference_price: float32
}

一次拿特定日期,所有資料(只限 backer、sponsor 會員使用)

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_dividend_result(
    start_date='2019-06-24',
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockDividendResult",
    "start_date": "2019-06-24",
    "token": "", # 參考登入,獲取金鑰
}
data = requests.get(url, params=parameter)
data = data.json()
data = pd.DataFrame(data['data'])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStockDividendResult",
    start_date= "2019-06-24",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

date stock_id before_price after_price stock_and_cache_dividend stock_or_cache_dividend max_price min_price open_price reference_price
0 2019-06-24 00697B 42.48 42.21 0.27 除息 9999.95 0.01 42.21 42.21
1 2019-06-24 00751B 46.05 45.46 0.59 除息 9999.95 0.01 45.46 45.46
2 2019-06-24 1707 220 213.5 6.5 234.5 192.5 213.5 213.5
3 2019-06-24 1711 17 16.5 0.5 18.15 14.85 16.5 16.5
4 2019-06-24 1906 13.55 13.05 0.5 14.35 11.75 13.05 13.05
{
    date: str,
    stock_id: str,
    before_price: float32,
    after_price: float32,
    stock_and_cache_dividend: float32,
    stock_or_cache_dividend: float32,
    max_price: float32,
    min_price: float32,
    open_price: float32,
    reference_price: float32
}

月營收表 TaiwanStockMonthRevenue

  • 資料區間:2002-02-01 ~ now

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_month_revenue(
    stock_id="2330",
    start_date='2019-03-31',
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockMonthRevenue",
    "data_id": "2330",
    "start_date": "2019-01-01",
    "token": "", # 參考登入,獲取金鑰
}
data = requests.get(url, params=parameter)
data = data.json()
data = pd.DataFrame(data['data'])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStockMonthRevenue",
    data_id="2330",
    start_date= "2019-01-02",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

date stock_id country revenue revenue_month revenue_year
0 2019-04-01 2330 Taiwan 79721587000 3 2019
1 2019-05-01 2330 Taiwan 74693615000 4 2019
2 2019-06-01 2330 Taiwan 80436931000 5 2019
3 2019-07-01 2330 Taiwan 85867929000 6 2019
4 2019-08-01 2330 Taiwan 84757724000 7 2019
{
    date: str,
    stock_id: str,
    country: str,
    revenue: int64,
    revenue_month: int64,
    revenue_year: int64
}

一次拿特定日期,所有資料(只限 backer、sponsor 會員使用)

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_month_revenue(
    start_date='2019-04-01',
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockMonthRevenue",
    "start_date": "2019-01-01",
    "token": "", # 參考登入,獲取金鑰
}
data = requests.get(url, params=parameter)
data = data.json()
data = pd.DataFrame(data['data'])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStockMonthRevenue",
    start_date= "2019-01-01",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

date stock_id country revenue revenue_month revenue_year
0 2019-05-01 1101 Taiwan 10596314000 4 2019
1 2019-05-01 1102 Taiwan 8434811000 4 2019
2 2019-05-01 1103 Taiwan 160751000 4 2019
3 2019-05-01 1104 Taiwan 418992000 4 2019
4 2019-05-01 1108 Taiwan 323834000 4 2019
{
    date: str,
    stock_id: str,
    country: str,
    revenue: int64,
    revenue_month: int64,
    revenue_year: int64
}

減資恢復買賣參考價格 TaiwanStockCapitalReductionReferencePrice

  • 資料區間:2011-01-01 ~ now

Example

import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockCapitalReductionReferencePrice",
    "data_id": "2327",
    "start_date": "2010-01-01",
    "token": "", # 參考登入,獲取金鑰
}
data = requests.get(url, params=parameter)
data = data.json()
data = pd.DataFrame(data['data'])
print(data.head())

        date stock_id  ClosingPriceonTheLastTradingDay  PostReductionReferencePrice  LimitUp  LimitDown  OpeningReferencePrice  ExrightReferencePrice ReasonforCapitalReduction
0  2013-09-18     2327                            10.20                        10.28    10.95       9.57                   10.3                   -1.0               Cash refund
1  2014-10-09     2327                            22.05                        49.82    53.30      46.35                   49.8                   -1.0               Cash refund
2  2016-08-15     2327                            54.80                        65.96    72.50      59.40                   66.0                   -1.0               Cash refund
3  2017-08-18     2327                           120.50                       168.13   184.50     151.50                  168.0                   -1.0               Cash refund
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStockCapitalReductionReferencePrice",
    data_id="2327",
    start_date= "2010-01-01",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

        date stock_id  ClosingPriceonTheLastTradingDay  PostReductionReferencePrice  LimitUp  LimitDown  OpeningReferencePrice  ExrightReferencePrice ReasonforCapitalReduction
1  2013-09-18     2327                            10.20                        10.28    10.95       9.57                   10.3                   -1.0               Cash refund
2  2014-10-09     2327                            22.05                        49.82    53.30      46.35                   49.8                   -1.0               Cash refund
3  2016-08-15     2327                            54.80                        65.96    72.50      59.40                   66.0                   -1.0               Cash refund
4  2017-08-18     2327                           120.50                       168.13   184.50     151.50                  168.0                   -1.0               Cash refund

台灣股價市值表 TaiwanStockMarketValue (只限 backer、sponsor 會員使用)

  • 資料區間:2004-01-01 ~ now
  • 資料更新時間 星期一至五 23:30,實際更新時間以 API 資料為主

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_market_value(
    stock_id='2330',
    start_date='2023-01-01',
    end_date='2024-01-01'
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockMarketValue",
    "data_id": "2330",
    "start_date": "2023-01-01",
    "end_date": "2024-01-01",
    "token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStockMarketValue",
    data_id= "2330",
    start_date= "2023-01-01",
    end_date= "2024-01-01",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

date stock_id market_value
0 2023-01-03 2330 1.174646e+13
1 2023-01-04 2330 1.165571e+13
2 2023-01-05 2330 1.188908e+13
3 2023-01-06 2330 1.188908e+13
4 2023-01-09 2330 1.247251e+13
{
    date: str,
    stock_id: str,
    market_value: int64
}

一次拿特定日期,所有資料(只限 backer、sponsor 使用)

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_daily(
    start_date='2023-01-03',
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockMarketValue",
    "start_date": "2023-01-03",
    "token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStockMarketValue",
    start_date= "2023-01-03",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

date stock_id market_value
0 2023-01-03 0050 2.561094e+11
1 2023-01-03 0051 7.967000e+08
2 2023-01-03 0052 5.644650e+09
3 2023-01-03 0053 2.611218e+08
4 2023-01-03 0055 1.625804e+09
{
    date: str,
    stock_id: str,
    market_value: int64
}

台灣股票下市櫃表 TaiwanStockDelisting

  • 資料區間:2001-01-01 ~ now
  • 資料更新時間 星期一至五 23:30,實際更新時間以 API 資料為主

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_delisting()
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockDelisting",
    "token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStockDelisting",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

date stock_id stock_name
0 2005-10-04 1204 津津
1 2001-11-01 1230 聯成食品
2 2005-10-04 1306 合發興業
3 2006-06-26 1408 中興紡織
4 2002-11-08 1431 新燕實業
{
    date: str,
    stock_id: str,
    stock_name: str
}

台股市值比重表 TaiwanStockMarketValueWeight (只限 backer、sponsor 會員使用)

  • 資料區間:2024-10-30 ~ now
  • 資料更新時間 每月1,2,3,28,29,30,31 23:45,實際更新時間以 API 資料為主

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_market_value_weight(
    stock_id='2330',
    start_date='2024-01-01',
    end_date='2025-01-01'
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockMarketValueWeight",
    "data_id": "2330",
    "start_date": "2024-01-01",
    "end_date": "2025-01-01",
    "token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStockMarketValueWeight",
    data_id= "2330",
    start_date= "2024-01-01",
    end_date= "2025-01-01",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

rank stock_id stock_name weight_per date type
0 1 2330 台積電 36.8397 2024-10-30 twse
{
    rank: int64,
    stock_id: str,
    stock_name: str,
    weight_per: float32,
    date: str,
    type: str
}

一次拿特定日期,所有資料(只限 backer、sponsor 使用)

Example

from FinMind.data import DataLoader

api = DataLoader()
# api.login_by_token(api_token='token')
# api.login(user_id='user_id',password='password')
df = api.taiwan_stock_market_value_weight(
    start_date='2024-10-30',
)
import requests
import pandas as pd
url = "https://api.finmindtrade.com/api/v4/data"
parameter = {
    "dataset": "TaiwanStockMarketValueWeight",
    "start_date": "2024-10-30",
    "token": "", # 參考登入,獲取金鑰
}
resp = requests.get(url, params=parameter)
data = resp.json()
data = pd.DataFrame(data["data"])
print(data.head())
library(httr)
library(data.table)
library(dplyr)
url = 'https://api.finmindtrade.com/api/v4/data'
response = httr::GET(
url = url,
query = list(
    dataset="TaiwanStockMarketValueWeight",
    start_date= "2024-10-30",
    token = "" # 參考登入,獲取金鑰
)
)
data = content(response)
df = data$data %>%
do.call('rbind',.) %>%
data.table
head(df)

Output

rank stock_id stock_name weight_per date type
0 43 1101 台泥 0.3327 2024-10-30 twse
0 63 1102 亞泥 0.2282 2024-10-30 twse
0 394 1103 嘉泥 0.0192 2024-10-30 twse
0 305 1104 環泥 0.0286 2024-10-30 twse
0 651 1108 幸福 0.0082 2024-10-30 twse
{
    rank: int64,
    stock_id: str,
    stock_name: str,
    weight_per: float32,
    date: str,
    type: str
}